On isoperimetric profiles of product spaces
نویسندگان
چکیده
منابع مشابه
Isoperimetric and related bounds on configuration spaces
Using finite difference operators, we define a notion of boundary and surface measure for configuration sets under Poisson measures. A Margulis-Russo type identity and a co-area formula are stated with applications to bounds on the probabilities of monotone sets of configurations and on related isoperimetric constants.
متن کاملOn Isoperimetric Profiles and Computational Complexity
The isoperimetric profile of a graph is a function that measures, for an integer k, the size of the smallest edge boundary over all sets of vertices of size k. We observe a connection between isoperimetric profiles and computational complexity. We illustrate this connection by an example from communication complexity, but our main result is in algebraic complexity. We prove a sharp super-polyno...
متن کاملIsoperimetric Regions in Spaces
We examine the least-perimeter way to enclose given area or volume in various spaces including some spaces with density.
متن کاملOn Isoperimetric Inequalities in Minkowski Spaces
In Geometric Convexity, but also beyond its limits, isoperimetric inequalities have always played a central role. Applications of such inequalities can be found in Stochastic Geometry, Functional Analysis, Fourier Analysis, Mathematical Physics, Discrete Geometry, Integral Geometry, and various further mathematical disciplines. We will present a survey on isoperimetric inequalities in real, fin...
متن کاملOn the Isoperimetric Constants for Product Measures
This quantity was introduced in 1969 by Cheeger [1] to bound from below the spectral gap of the Laplacian on compact Riemannian manifolds, and nowadays (1) is often called an isoperimetric inequality of the Cheeger type. The relationship between more general isoperimetric and certain Sobolev type inequalities was earlier considered by Maz’ya [2] (see for history, for example, [3, 4]). What was ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Analysis and Geometry
سال: 2003
ISSN: 1019-8385,1944-9992
DOI: 10.4310/cag.2003.v11.n1.a5